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We study the time evolution of a periodically driven quantum-mechanical system
coupled to several reservoirs of free fermions at different temperatures. This is a
paradigm of a cyclic thermodynamic process. We introduce the notion of a Floquet
Liouvillean as the generator of the dynamics of the coupled system on an extended
Hilbert space. We show that the time-periodic state which the state of the coupled
system converges to after very many periods corresponds to a zero-energy resonance
of the Floquet Liouvillean. We then show that the entropy production per cycle is
(strictly) positive, a property that implies Carnot’s formulation of the second law of
thermodynamics.
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1. INTRODUCTION

During the past several years, there has been substantial progress in the pro-
gram of deriving the fundamental laws of thermodynamics from nonequilibrium
quantum statistical mechanics (see Refs. 3 and 4, for a synopsis). In this pa-
per, we make a contribution to this program by studying Carnot’s formulation of
the second law of thermodynamics from the point of view of quantum statisti-
cal mechanics. For the sake of concreteness, we consider a periodically driven
two-level quantum-mechanical system, �, coupled to n ≥ 2 reservoirs of free
fermions, R1, . . . ,Rn . Our analysis can be generalized to a system composed
of an arbitrary quantum-mechanical system with a finite-dimensional Hilbert
space coupled to several reservoirs of (free) bosons or fermions at different
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temperatures.2 In order to study the time evolution of the coupled system, we ex-
tend Floquet theory for periodically driven quantum systems at zero temperature
(see for example, Refs. 11, 25, 26) to apply to systems at positive temperatures.

In particular, we introduce an operator, the Floquet Liouvillean, generating the
dynamics of the system on an extended Hilbert space, and we show that the time-
periodic state, which the state of the system converges to after very many periods,
corresponds to a zero-energy resonance of the Floquet Liouvillean. We also prove
(strict) positivity of entropy production per cycle, which amounts to Carnot’s
formulation of the second law of thermodynamics. For weak enough coupling of
the small system, �, to the reservoirs, the time-periodic state corresponding to the
zero-energy resonance can be expanded in powers of the coupling constant. This is
of considerable practical importance, since it enables one to explicitly compute the
degree of efficiency of the coupled system. Further discussion of the second law of
thermodynamics and another proof of convergence to time-periodic states using
methods of scattering theory will appear in Ref. 4. As far as we know, all previous
investigations of Carnot’s formulation of the second law of thermodynamics from
the point of view of quantum statistical mechanics assumed that the coupling is
switched on at time t = t0, and then switched off at a later time t = t0 + τ (see
Refs. 7, 22 and references therein). The novelty of our approach is to prove that the
state of the coupled system converges to a time-periodic state with the same period
as the one of the interaction, and that entropy production is (strictly) positive; (see
also Refs. 10, 20, 21).

The organization of this paper is as follows. In Sec. 2, we recall some basic
notions from quantum statistical mechanics, in particular, time-dependent pertur-
bations of C∗-dynamical systems, relative entropy, and Carnot’s formulation of
the second law of thermodynamics. We also discuss sufficient conditions to prove
strict positivity of entropy production per cycle. These conditions are satisfied in
the concrete example we consider in the following Section. In Sec. 3, we dis-
cuss a concrete model, and we state the assumptions we make on the interaction
between the small system, �, and the reservoirs, R1, . . . ,Rn . In Sec. 4, we intro-
duce the Floquet Liouvillean, whose spectrum we study using complex spectral
deformation techniques. In Sec. 5, we use results on the Floquet Liouvillean to
prove convergence of the state of the coupled system to a time-periodic state.
This is one of the main results of our paper. We then prove strict positivity of
entropy production per cycle in Sec. 6, and we discuss how to compute the degree
of efficiency of the coupled system for weak enough coupling. The main ingre-
dients of our analysis are a concrete representation of the fermionic reservoirs

2 Bosonic reservoirs are more difficult, technically, since the interaction term coupling � to the
bosonic reservoirs is generally an unbounded operator. However, one may readily extend the methods
developed in Refs. 20, 21 to study the bosonic case.
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(Araki-Wyss representation), a spectral approach to cyclic thermodynamic pro-
cesses using the so called Floquet Liouvillean, and complex spectral deformation
techniques.

2. GENERAL CONSIDERATIONS

In this section, we recall some of the basic notions of quantum statistical
mechanics, and we introduce the notion of time-periodic states. Although some
of the material is standard, it is presented in this section in order to make our
exposition reasonably self-contained.

In the algebraic formulation of quantum statistical mechanics, a physical
system is described by a C∗ or W ∗-dynamical system. Since we only consider
fermionic reservoirs in this paper, we restrict our attention to the discussion of C∗-
dynamical systems. However, our analysis can be generalized to W ∗-dynamical
systems; (see for example, Ref. 9, and also Refs. 20, 21).

A C∗-dynamical system is a pair (O, α), where O is the kinematical algebra
of the system, a C∗-algebra with identity, and α, which specifies the time evo-
lution, is a norm-continuous one-parameter group of ∗-automorphisms of O. A
physical state of the system is described by a positive, linear functional ω, with
ω(1) = 1. The set E(O) of all states is a convex, weak-∗ compact subset of the
dual O∗.

Physically relevant states of (isolated) thermal reservoirs are assumed to be
normal to equilibrium states characterized by the Kubo-Martin-Schwinger (KMS)
condition. An equilibrium state of (O, α) at inverse temperature β, ωβ , is an
(α, β)-KMS state satisfying

ωβ(aαt (b)) = ωβ(αt−iβ(b)a) ,

for all a, b ∈ O0, where O0 is norm-dense in O.
We briefly recall the perturbation theory for C∗-dynamical systems; (for

further details, see for example, Ref. 7). Let δ be the generator of α, ie, αt =
etδ, t ∈ R. The domain of the derivation δ,D(δ), is a ∗-subalgebra of O, and for
all a, b ∈ D(δ),

δ(a)∗ = δ(a∗), δ(ab) = δ(a)b + aδ(b).

Consider the time-dependent family of perturbations, {gV (t)}t∈R with self-
adjoint elements gV (t) ∈ O. Then αg , the perturbed time evolution, is a norm-
continuous one-parameter family of ∗-automorphisms of O satisfying

d

dt
αt

g(a) = αt
g(δ(a) + ig[V (t), a]) , (1)
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and α0
g(a) = a, for all a ∈ O. Explicity,

αt
g(a) = αt (a) +

∑

n≥1

i ngn
∫ t

0
dt1

∫ t1

0
dt2 · · ·

×
∫ tn−1

0
dtn[αtn (V (tn)), . . . , [αt1 (V (t1)), αt (a)], . . .]. (2)

In the standard interaction picture,

αt
g(a) = �t

gα
t (a)�t∗

g ,

where �g is a unitary element of O which satisfies
d

dt
�t

g = i�t
gα

t (gV (t)), (3)

and �0
g = 1; ie,

�t
g = 1 +

∑

n≥1

i ngn
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnα

tn (V (tn)) · · ·αt1 (V (t1)).

Next, we discuss the notion of relative entropy and of entropy production.
Assume that there exists a reference C∗-dynamics σω on O and a state ω with the
property that ω is an (σω,−1)-KMS state. (Equivalently, at inverse temperature
β ≥ 0, σ t

ω,β = σ
−t/β
ω ). Let δω be the generator of σω, and let (Hω, πω,
ω) be the

GNS representation of the kinematical algebra O associated to the state ω. (For
further discussion of the GNS construction see, for example, Ref. 7.)

A state η ∈ E(O) is called ω-normal if there exists a density matrix ρη on
Hω, such that, for all a ∈ O,

η(a) = T r (ρηπω(a)),

where T r is the trace over Hω. We will denote by Nω the set of all ω-normal states
in E(O).

For a state η ∈ Nω, which might be time-dependent, denote by Ent(η|ω) the
relative entropy of Araki. (1, 8) For finite systems,

Ent(η|ω) = −T r (η log ω − η log η). (4)

If η /∈ Nω, set Ent(η|ω) = +∞.3

For a self-adoint perturbation gV (t) ∈ D(δω) of the dynamical system, as
discussed above, we define the rate of entropy production in a state η ∈ E(O)
relative to a reference state ω as

Ep(η) := η(δω(gV (t))); (5)

see for example, Refs. 7 and 17.

3 Note the choice of the sign of relative entropy.
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It is instructive to see how one obtains this expression for entropy production
as the thermodynamic limit of quantities referring to finitely extended reservoirs,
Ref. 5. Consider a quantum system composed of a small system, �, coupled to n
reservoirs, R1, . . . ,Rn , at inverse temperatures β1, . . . , βn , respectively. We first
treat the reservoirs as finitely extended systems and then take the thermodynamic
limit of suitable quantities. The total Hamiltonian of the finite coupled system is

H (t) = H� +
n∑

i=1

HRi + gV (t),

where H� is the Hamiltonian of the uncoupled small system, HRi is the Hamilto-
nian of the i th uncoupled reservoir, and gV (t) is the interaction term coupling � to
the reservoirs. Let the reference state of the reservoirs be ωR with corresponding
density matrix ρR given by

ρR = ρR1 ⊗ · · · ⊗ ρRn ,

where ρRi is the density matrix corresponding to the equilibrium state of the
reservoir Ri at inverse temperature βi , which is given by

ρR = e−βi HRi

T rRi (e−βi HRi )
,

where T rRi is the trace over the Hilbert space of the reservoir Ri .
Define ωt := ω ◦ αt

g , where ω is the initial (σω,−1)-KMS state, and let ρω

be the density matrix corresponding to ω. For a finite system,

Ent(ωt |ωR) = −T r (ρωt log ρR) + T r (ρωt log ρωt )

= −T r (ρωt log ρR) + T r (ρωt log ρω),

and hence

d

dt
Ent(ωt |ωR) = iT r ([H (t), ρωt ] log ρR).

By cyclicity of the trace we have that

d

dt
Ent(ωt |ωR) = i

n∑

i=1

βi T r (ρωt [H (t), HRi ])

= i
n∑

i=1

βi T r (ρωt [gV (t), HRi ])

= ω ◦ αt
g(δω(gV (t))),
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where we have used in the last equation that δω = −∑n
i=1 βiδi , and δi = i[HRi , ·].

Note that the thermodynamic limit of the entropy production rate is well-defined.
One may relate the entropy production to the heat flux from the reservoirs.

The heat flux from reservoir Ri , i = 1, . . . , n, at time t is


Ri (t) : = − d

dt
ω ◦ αt

g(HRi ) (6)

= −iω
(
αt

g([gV (t), HRi ])
)

= ω ◦ αt
g(δi (gV (t))). (7)

It follows that
n∑

i=1

βi

Ri (t) = −Ep

(
ω ◦ αt

g

)
, (8)

which, for n = 1 and reversible processes, is a familiar equation.
We now give a definition of a time-periodic state in case of a time-periodic

coupling.

2.1. Time-periodic State4

Assume that the perturbation gV (t) is time periodic with period τ , and is
norm-differentiable, for t > 0. For s ∈ [0, τ ), define the time-periodic state ω+

g,s
as

ω+
g,s := lim

n→∞ ω ◦ αnτ+s
g . (9)

Note that it follows from this definition of a time-periodic state that,

ω+
g,s ◦ ατ

g = ω+
g,s .

We will show in Sec. 5 that this state is related to a zero-energy resonance of
the so called Floquet Liouvillean.

Next, we exhibit a connection to Carnot’s formulation of the second law of
thermodynamics. Consider a cyclic thermodynamic process in which � is coupled
to two reservoirs,R1 andR2, at temperatures T1 and T2, respectively, with T1 > T2.
Reservoir 1 acts as a heat source and reservoir 2 as a heat sink. Recall that the
generator of the free dynamics of reservoir Ri is δi , i = 1, 2. Since V (t) is norm

4 A weaker definition of a time-periodic state is

ω+
g,s := lim

n→∞
1

nτ

∫ nτ

0
dtω ◦ α t+s

g .
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differentiable, for t > 0, it follows that

d

dt
δi

(
�t

g

) = δi

(
d

dt
�t

g

)
,

for i = 1, 2. Using the fact that δi , i = 1, 2, is a ∗-derivation which commutes
with αt and Eq. (3), it follows that

d

dt
ω

(
�t

gδi (�
t∗
g )

) = iω ◦ αt
g(δi (gV (t))).

Therefore, the heat energy flowing from reservoir Ri into system � during
the time interval [0, t] is

�t
0 Qi = −

∫ t

0
dt ′ω ◦ αt ′

g (δi (gV (t ′))) (10)

= −iω
(
�t

gδi

(
�t∗

g

))
, (11)

i = 1, 2. Moreover, integrating (8), we have

β1�
t
0 Q1 + β2�

t
0 Q2 = −Ent

(
ω ◦ αt

g|ω
) ≤ 0, (12)

since the relative entropy Ent(ω ◦ αt
g|ω) ≥ 0.5

Now define the heat flow per cycle from each reservoir Ri into � as

�Qi := lim
n→∞[Qi ((n + 1)τ ) − Qi (nτ )], i = 1, 2. (13)

We assume that the system converges to a time-periodic state, and that during
every cycle, it performs work, ie,

�A = �Q1 + �Q2 ≥ 0. (14)

It follows from the definite sign of relative entropy and the existence of the
time-periodic limit that the entropy production per cycle is nonnegative,

�Ent =
∫ τ

0
dtω+

g,t (δω(gV (t))) = −(β1�Q1 + β2�Q2) ≥ 0. (15)

The fact that β1 ≤ β2, (14) and (15), imply that �Q1 ≥ 0. It then follows
that the degree of efficiency,

η := �A

�Q1
(16)

= �Q1 + �Q2

�Q1
(17)

≤ T1 − T2

T1
=: ηCarnot, (18)

5 This follows from a general trace inequality, see for example, Ref. 7.
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which is nothing but Carnot’s formulation of the second law of thermodynamics.
In certain situations, one can show that

lim
n→∞

[
Ent

(
ω ◦ α(n+1)τ

g |ω) − Ent
(
ω ◦ αnτ

g |ω)]
> 0, (19)

which holds for the model we consider in this paper, and hence η < ηCarnot. The
following proposition states sufficient conditions for inequality (19) to hold.

Proposition 2.1. For t ∈ R+, let s := t mod τ . Suppose that

(a) ω+
g,s /∈ Nω, and that

(b) supT ∈R+ | ∫ T
0 dt{ω+

g,t modτ (δω(gV (t))) − ω ◦ αt
g(δω(gV (t)))}| < C where

C, is a finite, nonnegative constant.

Then Ep(ω+
g,s) > 0.

Proof: Suppose that Ep(ω+
g,s) = 0. Then

Ent
(
ω ◦ αt

g|ω
) =

∫ t

0
dt ′ω ◦ αt ′

g (δω(gV (t ′)))

=
∫ t

0
dt ′{ω ◦ αt ′

g (δω(gV (t ′))) − ω+
g,t ′mod τ (δω(gV (t ′)))

}

≤ C.

In particular,

Ent(ω+
g,s |ω) = lim

n→∞ Ent
(
ω ◦ αnτ+s

g |ω) ≤ C.

Let M = πω(O)′′, the double commutant of πω(O), and let M∗ be its predual.
The set of all states γ ∈ Nω such that Ent(γ |ω) ≤ C is σ (M∗,M)-compact (see
Refs. 7 and 8). It follows that ω+

g,s ∈ Nω, which contradicts assumption (a). �

2.2. Summary of Main Results

Before specifying the concrete model we study, we briefly describe the main
results of this paper, deferring precise statements and proofs to subsequent sec-
tions. One key result of this paper is transposing the problem of proving con-
vergence to a time-periodic state to a spectral problem by introducing the so
called Floquet Liouvillean (Sec. 4). In Sec. 5, Theorem 5.1, we show that the
time-periodic state to which the state of the coupled system converges after very
many periods is related to a zero-energy resonance of the Floquet Liouvillean. We
also establish strict positivity of entropy production per cycle in the time-periodic
state (Sec. 6, Theorem 6.3). In the case of two reservoirs,positivity of entropy
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production implies Carnot’s formulation of the second law of thermodynamics,

η < ηCarnot.

Our analysis also has some quantitative implications: At weak coupling, the
time-periodic state is analytic in the coupling constant, and hence one can calcu-
late the entropy production per cycle perturbatively. This leads to a perturbative
calculation of the degree of efficiency when the system is operated as a heat engine.

3. THE MODEL

As an example, we consider a two-level quantum system � coupled to n
reservoirs, R1, . . . ,Rn, n ≥ 2, of free fermions in thermal equilibrium at inverse
temperatures β1, . . . , βn , and chemical potentials µ1, . . . , µn .6

3.1. The Small System

The kinematical algebra of � is O� = M(C2), the algebra of complex 2 × 2
matrices over the Hilbert spaceH� = C2. Its Hamiltonian is given by H� = ω0σ3,
where σi , i = 1, 2, 3, are the Pauli matrices. When the system � is not coupled to
the reservoirs, its dynamics in the Heisenberg picture is given by

αt
�(a) := ei H� t ae−i H� t , (20)

for a ∈ O� .
A physical state of the small system is described by a density matrix ρ� . The

operator κ� = ρ
1/2
� belongs to the space of Hilbert-Schmidt operators, which is

isomorphic to H� ⊗ H� . Two commuting representations of O� on H� ⊗ H�

are given by

π�(a) := a ⊗ 1�, (21)

π#
�(a) := 1� ⊗ C�aC�, (22)

where C� is an antiunitary involution on H� corresponding to complex conjuga-
tion; (see for example, Ref. 6).

The generator of the free dynamics on the Hilbert space H� ⊗ H� is the
standard Liouvillean

L� = H� ⊗ 1� − 1� ⊗ H�. (23)

The spectrum of L� is σ (L�) = {−2ω0, 0, 2ω0}, with double degeneracy at
zero.

6 For the sake of simplicity of exposition, we set the chemical potentials of the reservoirs to be equal
in the subsequent sections.
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Let ω� be the initial state of the small system � with corresponding vector

� ∈ H� ⊗ H� . The modular operator associated with ω� is �� = ω� ⊗ ω̄�−1

,
and the modular conjugation operator, J� , is given by

J�(φ ⊗ ψ) = ψ̄ ⊗ φ̄,

for φ,ψ ∈ H� . If ω� corresponds to the trace state, then �� = 1� ⊗ 1� .

3.2. The Reservoirs

Each thermal reservoir is formed of free fermions. It is infinitely ex-
tended and dispersive. We assume that the Hilbert space of a single fermion
is h = L2(R+, m(u)du;B), where B is an auxiliary Hilbert space, and m(u)du
is a measure on R+. We also assume that the single-fermion Hamiltonian, h,
corresponds to the operator of multiplication by u ∈ R+. For instance, for reser-
voirs formed of nonrelativistic fermions in R3, the auxiliary Hilbert space B is
L2(S2, dσ ), where S2 is the unit sphere in R3, dσ is the uniform measure on S2,
and u = |�k|2, where �k ∈ R3 is the particle’s momentum. In the latter case, the
measure on R+ is choosen to be m(u)du = 1

2

√
udu. For the sake of concreteness,

we will consider B = L2(Sd−1, dσ ), d > 2, in the sequel.
Let b and b∗ be the annihilation-and creation operators on the Fermionic Fock

space F(L2(R+; B)). They satisfy the CAR

{b#( f ), b#(g)} = 0, (24)

{b( f ), b∗(g)} = ( f, g)1 , (25)

where b# stands for b or b∗, f, g ∈ L2(R+;B), and (·, ·) denotes the scalar product
in L2(R+;B). Moreover, let 
R denote the vacuum state in F(L2(R+;B)).

The kinematical algebra, ORi , of the i th reservoir Ri , i = 1, . . . , n, is gen-
erated by b# and the identity 1Ri . The free dynamics of each reservoir (before the
systems are coupled) is given by

αt
Ri

(b#
i ( f )) = b#

i (eitu f ), (26)

for i = 1, . . . , n, f ∈ L2(R+;B). For a nonzero chemical potential, µi , of reser-
voir Ri , an auxiliary free dynamics is generated by H̃Ri = d�i (h − µi ); see for
example, Ref. 7.

The (αt
Ri

, βi , µi )-KMS state, ωRi , of each reservoir Ri , i = 1, . . . , n, at
inverse temperature βi and chemical potential µi , is the gauge invariant, quasi-
free state uniquely determined by the two-point function

ωRi (b∗
i ( f )bi ( f )) = ( f, ρβi ,µi (·) f ), (27)

where ρβi ,µi (u) := 1
eβi (u−µi )+1

.
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Next, we introduce F AW
i := FRi (L2(R+;B)) ⊗ FRi (L2(R+;B)), the GNS

Hilbert space for the Araki-Wyss representation of each fermionic reservoir Ri

associated with the state ωRi . (2) Let b̃i and b̃∗
i denote the annihilation- and creation

operators on FRi (L2(R+;B)) satisfying the CAR, and denote by 
Ri the vacuum
state in FRi (L2(R+;B)), with b̃i


Ri = 0. The Araki-Wyss representation, πi , of
the kinematical algebra ORi , i = 1, . . . , n, on F AW

i is given by

πi (bi ( f )) := b̃i (
√

1 − ρβi ,µi f ) ⊗ 1Ri + (−1)Ni ⊗ b̃∗
i (

√
ρβi ,µi f̄ ),

π#
i (bi ( f )) := b̃∗

i (
√

ρβi ,µi f )(−1)Ni ⊗ (−1)Ni + 1Ri ⊗ (−1)Ni b̃i (
√

1 − ρβi ,µi f̄ ),

(28)
where Ni = d�i (1) is the particle number operator for reservoir Ri . Furthermore,

Ri ⊗ 
Ri ∈ F AW

i corresponds to the equilibrium KMS state ωRi of reservoir
Ri .

The free dynamics on the GNS Hilbert space F AW
i of each reservoir Ri is

generated by the standard Liouvillean LRi . The modular operator associated with
(ORi , ωRi ) is given by

�Ri = e−βiLRi
,

and the modular conjugation is given by

JRi (� ⊗ 
) = (−1)Ni (Ni −1)/2
̄ ⊗ (−1)Ni (Ni −1)/2�̄

for �,
 ∈ F AW
i ; (see, for example, Ref. 7).

In order to apply the complex translation method developed in (Refs. 14–
16), we map F AW

i := FRi (L2(R+;B)) ⊗ FRi (L2(R+;B)) to FRi (L2(R;B)) us-
ing the isomorphism between L2(R+;B) ⊕ L2(R+;B) and L2(R;B). To every
f ∈ L2(R+;B), we associate functions fβ,µ, f #

β,µ ∈ L2(R;B) by setting

fβ,µ(u, σ ) :=
{√

m(u)
√

1 − ρβ,µ(u) f (u, σ ), u ≥ 0
√

m(−u)
√

ρβ,µ(−u) f̄ (−u, σ ), u < 0
, (29)

and

f #
β,µ(u, σ ) : =

{√
m(u)i

√
ρβ,µ(u) f (u, σ ), u ≥ 0,

√
m(−u)i

√
1 − ρβ,µ(−u) f̄ (−u, σ ), u < 0,

(30)

= i f̄β,µ(−u, σ ),

where m(u)du is the measure on R+, see Eq. (28). (For a discussion of this map,
see Appendix)

Let ai and a∗
i be the annihilation and creation operators on

FRi (L2(R, du;B)). Then

πi (b
#
i ( f )) → a#

i ( fβi ,µi ), (31)
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π#
i (b#

i ( f )) → i(−1)Ni a#
i ( f #

βi ,µi
); (32)


Ri ⊗ 
Ri → 
̃Ri , (33)

where a#
i stands for ai or a∗

i , and 
̃Ri is the vacuum state in FRi (L2(R,B)). Using
Eqs. (27) and (28), one readily verifies that

〈
̃Ri , a∗
i ( fβi ,µi )ai ( fβi ,µi )
̃

Ri 〉 = 〈
̃Ri , a∗
i ( f #

βi ,µi
)ai ( f #

βi ,µi
)
̃Ri 〉

= ωRi (b∗
i ( f )bi ( f ))

= ( f, ρβi ,µi (·) f ) .

Moreover, the free Liouvillean on FRi (L2(R;B)) for the reservoir Ri is
mapped to

LRi = d�i (ui ), (34)

where ui ∈ R.

3.3. The Coupled System

The kinematical algebra of the total system, � ∨ R1 ∨ · · · ∨ Rn , is given by

O = O� ⊗ ORi ⊗ · · · ⊗ ORn , (35)

and the Heisenberg-picture dynamics of the uncoupled system is given by

αt
0 = αt

� ⊗ αt
Ri

⊗ · · · ⊗ αt
Rn

. (36)

The representation of O on H := H� ⊗ H� ⊗ FR1 (L2(R;B)) ⊗ · · · ⊗
FRn (L2(R;B)), determined by the initial state

ω = ω� ⊗ ωR1 ⊗ · · · ⊗ ωRn (37)

by the GNS construction, is given by

π = π� ⊗ πβ1 ⊗ · · · ⊗ πβn , (38)

and an anti-representation commuting with π by

π# = π#
� ⊗ π#

β1
⊗ · · · ⊗ π#

βn
. (39)

Moreover, let 
 : 
� ⊗ 
̃R
1 ⊗ · · · ⊗ 
̃Rn denote the vector inH correspond-

ing to the state ω. Denote the double commutant of π (O) by M := π (O)′′, which
is the smallest von Neumann algebra containing π (O).

The Liouvillean of the total uncoupled system is given by

L0 = L� +
n∑

i=1

LRi . (40)
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This defines a selfadjoint operator on H.
For a ∈ O we abreviate π (a) by a whenever there is no danger of confusion.

The modular operator of the total system is

� = �� ⊗ �R1 ⊗ · · · ⊗ �Rn ,

and the modular conjugation is

J = J� ⊗ JR1 ⊗ · · · ⊗ JRn .

According to Tomita-Takesaki theory,

JMJ = M′,�i tM�−i t = M,

for t ∈ R; (see for example Ref. 7). Furthermore, for a ∈ M,

J�1/2a
 = a∗
. (41)

The system � is coupled to the reservoirsR1, . . . ,Rn , through an interaction
gV (t), where V (t) ∈ O is given by

V (t) =
n∑

i=1

{σ ⊗ b∗
i ( fi (t)) + σ+ ⊗ bi ( fi (t))}, (42)

where σ± = σ1 ± iσ2, and fi (t) ∈ L2(R+;B), i = 1, . . . , n, are form factors.7

The standard Liouvillean of the interacting system acting on the GNS Hilbert
space H is given by

Lg(t) = L0 + gI (t), (43)

where the unperturbed Liouvillean is defined in (40), and the interaction Liouvil-
lean determined by the operator V (t) is given by

I (t) = {V (t) − J V (t)J }

=
n∑

i=1

{σ ⊗ 1� ⊗ a∗
i ( fi,βi ,µ(t)) + σ+ ⊗ 1� ⊗ ai ( fi,βi ,µi (t))

−i1� ⊗ σ ⊗ (−1)Ni a∗
i ( f #

i,βi ,µ
(t)) − i1� ⊗ σ+ ⊗ (−1)Ni ai ( f #

i,βi ,µi
(t))},

(44)

where ai , a∗
i are the annihilation and creation operators on the fermionic Fock

space FRi (L2(R;B)). Note that since the perturbation is bounded, the domain of
Lg(t) is D(Lg(t)) = D(L0).

7 Note that this form of an interaction preserves the total number of fermions in � ∨ R1 ∨ · · · ∨ Rn ,
as required by gauge invariance of the first kind.
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Let Ūg be the propagator generated by the standard Liouvillean. It satisfies

∂t Ūg(t) = −iLg(t)Ūg(t); Ūg(0) = 1. (45)

The Heisenberg-picture evolution is given by

αt
g(a) = Ū ∗

g (t)aŪg(t)], (46)

for a ∈ O.
Generally, the kernel of Lg(t), K erLg , is expected to be empty when at least

two of the reservoirs have different temperatures; (see Sec. 6 and Refs. 16, 20 and
21).8 This motivates introducing the so called C-Liouvillean, Lg , which generates
dynamics on a Banach space contained in H (isomorphic to O) and which, by
construction, has a non-trivial kernel.

Consider the Banach space

C(O,
) := {a
 : a ∈ O},
with norm ‖a
‖∞ = ‖a‖. Since 
 is separating for O, the norm ‖a
‖∞ is
well-defined, and since 
 is cyclic for O, C(O,
) is dense in H.

We set φ(a) = a
, and define a propagator Ug(t, t ′) by

φ
(
αt,t ′

g (a)
) = Ug(t, t ′)a
. (47)

Then

∂tUg(t, t ′) = i Lg(t)Ug(t, t ′) with Ug(t, t) = 1, (48)

and

Ug(t ′, t)
 = 
. (49)

Differentiating (47) with respect to t, setting t = t ′, and using (48), (46) and
(41), one obtains

[(L0 + gV (t))a − a(L0 + gV (t))]
 = [(L0 + gV (t))a − (V (t)a∗)∗]


= (L0 + gV (t) − g J�1/2V (t)�−1/2 J )a


≡ Lg(t)a
.

Hence, the C-Liouvillean is given by

Lg(t) := L0 + gV (t) − g J�1/2V (t)�−1/2 J. (50)

8 This is consistent with the fact that the coupled system is not expected to possess the property of
return to equilibrium if the reservoirs have different temperatures (or chemical potentials). One can
verify that, indeed, this is the case when assumptions (A1)–(A3), below, are satisfied.
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Note that, by construction,

Lg(t)
 = 0.

for all t ∈ R.
Next, we discuss the assumptions on the interaction. For δ > 0, we define the

strips in the complex plane

I (δ) := {z ∈ C : |I mz| < δ}
and

I −(δ) := {z ∈ C : −δ < I mz < 0}. (51)

Moreover, for every function f ∈ L2(R+;B), we define a function f̃ by setting

f̃ :=
{√

m(u)(u, σ ), u ≥ 0
√

m(|u|) f̄ (|u|, σ ), u ≥ 0
, (52)

where m(u)du is the measure on R+. Denote by H 2(δ,B) the Hardy class of
analytic functions

h : I (δ) → B,

with

‖h‖H 2(δ,B) := sup
|θ |<δ

∫

R
‖h(u + iθ )‖2

Bdu < ∞.

We require the following basic assumptions on the interaction term.

(A1) Periodicity.
The interaction term V (t) is periodic with (a minimal) period τ <

∞ : V (t) = V (t + τ ).
(A2) Regularity of the form factors.

Assume that ∃δ > 0, independent of t and i ∈ {1, . . . , n}, such that

e−βi u/2 fβi ,ui (u, t) ∈ H 2(δ,B),

where fi is as in Eq. (42) and fβ,µ is defined in (29).
(A3) Fermi Golden Rule.

We assume that

n∑

i=1

‖ f̃i (2ω0, t)‖2
B > 0,
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where f̃i , is defined in (52). which means that the coupling of � to the
reservoirs is non-vanishing in second order perturbation theory.9

Let f̂ be the Fourier transform of f̃ given by

f̂m(u, ω) = 1

τ

∫ τ

0
dte−imωt f̃ (u, t), (53)

where ω = 2π
τ

, and τ is the period of the interaction term (see assumption (A1)).

Then f̃ (u, t) = ∑
m∈z eimωt f̂m(u, ω). It follows from (A2) and Parseval’s theorem

that
∑

m∈Z
‖ f̂m(u + mω,ω)‖2

B < ∞, (54)

for u ∈ R.
Let Ũg be the propagator generated by the adjoint of the C-Liouvillean, ie,

∂t Ũg(t, t ′) = −iŨg(t, t ′)L∗
g(t), (55)

Ũg(t, t) = 1. (56)

Assumption (A2) implies that the perturbation is bounded, and hence the
domain of L#

g , where L#
g stands for Lg or L∗

g , is

D(L#
g) = D(L0),

and Ug, Ũg are bounded and strongly continuous in t and t ′.

4. THE FLOQUET LIOUVILLEAN

In this section, we extend Floquet theory for periodically driven quantum
systems at zero temperature to a theory for systems at positive temperatures.
The goal is to investigate whether the state of the coupled system converges to
a time-periodic state. We introduce the Floquet Liouvillean, which generates the
dynamics on a suitable Banach space, and we show in the following section that
the time-periodic state to which the state of the system converges after very many
periods is related to a zero-energy resonance of the Floquet Liouvillean.

We consider the extended Hilbert space H̃ := L2([0, τ ]) ⊗ H, where τ is
the period of the perturbation appearing in (42) and (A1), and we introduce the

9 For instance, when the reservoirs are formed of nonrelativistic fermions in R3, an example of a form
factor satisfying assumptions (A1)–(A3) is given by

fi (u, t) = hi (t)|u|ne−|u|2 ,

where hi (t) is a bounded, periodic function of t ∈ R and n ≥ 2.
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Floquet Liouvillean

K ∗
g : −i∂t ⊗ 1 + 1 ⊗ L∗

g(t), (57)

with periodic boundary conditions in t. Note that, under assumption (A2), K ∗
g is a

closed operator with domain D = D(i∂t ⊗ 1) ∩ D(1 ⊗ L0).
By Fourier transformation, H̃ is isomorphic to

⊕

n∈Z
〈einωt 〉 ⊗ H =

⊕

n∈Z
h(n) ⊗ H,

where h(n) := 〈einωt 〉 and ω = 2π
τ

.
According to Floquet theory of quantum mechanical systems driven by peri-

odic perturbation, (11, 25, 26), the semi-group generated by K ∗
g is given by

(e−iσ K ∗
g f )(t) = Ũg(t, t − σ ) f (t − σ ), (58)

where f ∈ H̃ and σ ∈ R. Relation (58) can be seen by differentiating both sides
with respect to σ and setting σ = 0 (see Ref. 11). (Alternatively, one may use the
Trotter product formula, (23).)

Note that if

K ∗
g φ = λφ, (59)

for φ ≡ φ(t) ∈ H̃ and λ ∈ C, then φ(t) satisfies

Ũg(t, 0)φ(0) = e−iλtφ(t). (60)

Conversely, if

Ũg(τ, 0)φ(0) = e−iλτφ0, (61)

then

φ(t) = eiλt Ũg(t, 0)φ0 (62)

is an eigenfunction of K ∗
g with eigenvalue λ.

We now study the spectrum of K ∗
g using complex spectral deformation tech-

niques as developed in Refs. 12, 14–16.10

Let ui be the unitary transformation generating translations in energy for the
i th reservoir, i = 1, . . . , n. More precisely, for fi ∈ L2(R;B),

ui (θ ) fi (u) = f θ
i (u) = fi (u + θ ).

Moreover, let

Ui (θ ) := �i (ui (θ ))

denote the second quantization of ui (θ ).

10 One may alternatively use the methods developed in Refs. 20, 21.
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Explicitly, Ui (θ ) = eiθ Ai , where Ai := id�i (∂ui ) is the second quantization
of the generator of energy translations for the i th reservoir, i = 1, . . . , n. We set

U (θ ) := 1� ⊗ 1� ⊗ U1(θ ) ⊗ · · · ⊗ Un(θ ). (63)

Let

K ∗
g (θ ) := U (θ )K ∗

g U (−θ ) (64)

= −i∂t + L∗
g(t, θ ), (65)

where L∗
g(t, θ ) is given by

L∗
g(t, θ ) := U (θ )L∗

g(t)U (−θ ) = L0 + Nθ + gṼ tot(t, θ ), (66)

L0 = L� + ∑
i
LRi ,LRi = d�(ui ), i = 1, . . . , n, and

Ṽ tot(t, θ ) =
∑

i

{
σ+ ⊗ 1� ⊗ ai ( f (θ)

i,βi ,µi
(t)) + σ ⊗ 1� ⊗ a∗

i ( f θ
i,βi ,µi

(t))

− i1� ⊗ σ ⊗ (−1)Ni (ai (e
βi (ui −µi )/2 f #(θ)

i,βi ,µi
(t))

− i1� ⊗ σ+ ⊗ (−1)Ni a∗
i (e−βi (ui −µi )/2 f #(θ)

i,βi ,µi
)
}
.

It follows from assuption (A2) that, for θ ∈ I (δ), Ṽ tot
g (t, θ ) is a bounded op-

erator. Hence K ∗
g (t, θ ) is well-defined and closed on the domain D := D(i∂t ) ∩

D(N ) ∩ D(LR1 ) ∩ · · · ∩ D(LRn ). When the coupling g = 0, the pure point spec-
trum of L0 is σpp(L0) = {−2ω0, 0, 2ω0}, with double degeneracy at 0, and the
continuous spectrum of L0 is σcont (L0) = R. It follows that

σpp(K0) = {
E (k)

j (g = 0) = E j + kω : j = 0, . . . , 3, k ∈ Z
}
, (67)

where E0,1 = 0, E2 = −2ω0, and E3 = 2ω0, and σcont (K0) = R. Let

K � := −i∂t + L�.

Clearly, σ (K �) = σpp(K0). We have the following two easy lemmas.

Lemma 4.1. For θ ∈ C, the following holds.

(i) For any ψ ∈ D, one has

‖K0(θ )ψ‖2 = ‖K0(Reθ )ψ‖2 + |I mθ |2‖Nψ‖2. (68)

(ii) If I mθ �= 0, then K0(θ ) is a normal operator satisfying

K0(θ )∗ = K0(θ̄), (69)

and D(K0(θ )) = D.
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(iii) The spectrum of K0(θ ) is

σcont (K0(θ )) = {nθ + s : n ∈ N\{0} and s ∈ R}, (70)

σpp(K0(θ )) = {kω + E j : j = 0, . . . , 3, k ∈ Z}, (71)

where E0,1 = 0, E2 = −2ω0 and E3 = 2ω0, (the eignevaues of L�), and
ω = 2π

τ
.

Proof: The first claim follows directly by looking at the sector where N = n1,
since K0(θ ) restricted to this sector is reduced to

K (n)
0 (θ ) = K � + s1 · · · + sn + nθ, (72)

where s1, . . . , sn are interpreted as one-particle multiplication operators. For
I mθ �= 0, it also follows from (72) that

D = {ψ = {ψ (n)} : ψ (n) ∈ D
(
K (n)

0 (θ )
)

and
∑

n

‖K (n)
0 (θ )ψ (n)‖2 < ∞},

and hence K0(θ ) is a closed normal operator on D. Claims (ii) and (iii) follow
from the corresponding statements on K (n)

0 (θ ). �

Lemma 4.2. Suppose (A1)–(A3) hold, and assume that (g, θ ) ∈ C × I −(δ). Then
the following holds.

(i) D(K ∗
g (θ )) = D and (K ∗

g (θ ))∗ = Kḡ(θ̄).
(ii) The map (g, θ ) → K ∗

g (θ ) from C × I −(δ) to the set of closed operators

on H̃ is an analytic family (of type A) in each variable separately; (see
Ref. 18, chapter V, Sec. 3.2).

(iii) For finite g ∈ R and Imz large enough,

s − lim
I mθ↑0

(K ∗
g (θ ) − z)−1 = (K ∗

g (Reθ ) − z)−1. (73)

Proof: The first claim (i) follows from the fact that gṼ tot(t, θ ) is bounded for
θ ∈ I (δ). It also follows from assumption (A2) that (g, θ ) → K ∗

g (θ ) is analytic in
θ ∈ I −(δ). Analyticity in g is obvious from (65). We still need to prove claim (iii).
Without loss of generality, assume that Reθ = 0. It follows from assumption (A2)
that the resolvent formula

(K ∗
g (θ ) − z)−1 = (K ∗

0 (θ ) − z)−1(1 + gṼ tot(·, θ )(K ∗
0 (θ ) − z)−1)−1, (74)

holds for small g, as long as z belongs to the half-plane {z ∈ C : 0 < c < I mz}.
Since (K ∗

0 (θ ) − z)−1 is uniformly bounded as I mθ ↑ 0 for g ∈ R finite and Imz
large enough, and Ṽ tot(θ ) is bounded and analytic in θ , claim (iii) follows from
the Neumann series expansion of the resolvent of K ∗

g (θ ). �
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Next, we apply degenerate perturbation theory, as developed in Ref. 12, to
compute the spectrum of K ∗

g (θ ). Using contour integration, one may define the
projection onto the perturbed eigenstates of K ∗

g (θ ), for I mθ ∈ I −(δ). Let

P̃g,(k)(θ ) :=
∮

γ k

dz

2π i
(z − K ∗

g (θ ))−1, (75)

where γk is a contour that encloses the eigenvalues E (k)
j (g = 0), j = 0, . . . , 3, k ∈

Z, at a distance d > 0, such that, for sufficiently small |g| (to be specified below)
the contour also encloses E (k)

j (g).

Moreover, let T̃g,(k) := P̃0,(k) P̃g,(k)(θ )P̃0(k).11 We show in Theorem 4.3 that
the isomorphism

S̃g,(k)(θ ) := T̃ −1/2
g,(k) P̃0,(k) P̃g,(k)(θ ) : Ran(P̃g,k(θ )) → h(k) ⊗ H� ⊗ H� (76)

has an inverse

S̃−1
g,(k)(θ ) := P̃g,(k)(θ )P̃0,(k)T̃

−1/2
g,(k) (t) : h(k) ⊗ H� ⊗ H� → Ran(P̃g,(k)(θ )). (77)

We set

M̃g,(k) := P̃0,(k) P̃g,(k)(θ )K ∗
g (θ )P̃g,(k)(θ )P̃0,(k), (78)

and define the quasi-Floquet Liouvillean by

�̃g,(k) := S̃g,(k)(θ )P̃g,(k)(θ )K ∗
g (θ )P̃g,(k)(θ )S̃−1

g,(k)(θ ) = T̃ −1/2
g,(k) M̃g,(k)T̃

−1/2
g,(k) . (79)

Let κ = min{δ, π
β1

, . . . , π
βn

}, where δ appears in assumption (A2), Sec. 3, and
β1, . . . , βn , are the inverse temperatures of the reservoirsR1, . . . ,Rn , respectively.
For θ ∈ I −(κ) (see (51)), we choose a parameter ν such that

−κ < ν < 0 and − κ < I mθ < −κ + |ν|
2

. (80)

We also choose a constant g1 > 0 such that

g1C < (κ − |ν|)/2, (81)

where

C := sup
θ∈I (δ),t∈R

‖Ṽ tot(t, θ )‖ < ∞. (82)

Theorem 4.3. Suppose that assumptions (A1)–(A3) hold. Then, for g1 > 0 sat-
isfying (81), θ ∈ I −(k) and ν satisfying (80), the following holds.

11 Note that, although K ∗
0 (θ ) is unbounded, it is a normal operator, and hence P̃0,(k) is well-defined by

the spectral theorem: (see for example Ref.18).
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(i) If |g| < g1, the essential spectrum of the operator K ∗
g (θ ) is contained in

the half-plane C\�(ν), where �(ν) := {z ∈ C : I mz ≥ ν}. Moreover, the
discrete spectrum of K ∗

g (θ ) is indepenent of θ ∈ I −(K ). If |g| < 1/2g1,

then the spectral projections P̃g,(k)(θ ), k ∈ Z, associated to the spectrum
of K ∗

g (θ ) in the half-plane �(ν), are analytic in g and satisfy the estimate

‖P̃g,(k)(θ ) − P̃0,(k)‖ < 1. (83)

(ii) If |g| <
g1

2 , then the quasi-Floquet Liouvillean �̃g,(k) defined in (79) de-
pends analytically on g, and has a Taylor expansion

�̃g,(k) = K �
(k) +

∞∑

j=1

g2 j �̃
(2 j)
(k) (84)

where

K �
(k) := kω + L�, k ∈ Z. (85)

The first non-trivial coefficient in (84) is

�̃
(2)
(k) = 1

2

∮

γk

dz

2π i

(
ξ(k)(z)

(
z − K �

(k)

)−1 + (z − K �
(k))

−1ξ(k)(z)
)
,

where ξ(k)(z) = P̃0,(k)Ṽ tot(θ )(z − K0(θ ))−1Ṽ tot(θ )P̃0,(k).

Proof: (i) The resolvent formula

(K ∗
g (θ ) − z)−1 = (K ∗

0 (θ ) − z)−1(1 + gṼ tot(·, θ )(K ∗
0 (θ ) − z)−1)−1, (86)

holds for small g and z in the half-plane {z ∈ C : 0 < c < I mz}. We extend the
domain of validity of (86) by refining the estimate on gṼ tot(t, θ )(K ∗

0 (θ ) − z)−1.
Note that

‖gṼ tot(·, θ )(K ∗
0 (θ ) − z)−1‖ ≤ |g|C‖(K0(θ ) − z)−1‖

≤ |g|C 1

dist(z, η(K ∗
0 (θ )))

,

where C is given by (82) and η(K ∗
0 (θ )) is the closure of the numerical range of

K ∗
0 . Fix g1 such that it satisfies (81), and choose ε such that ε >

k−|ν|
2 > 0. Let

G(ν, ε) := {z ∈ C : I mz > ν; dist(z, η(K ∗
0 (θ ))) > ε}.

Then

sup
z∈G(ν,ε)

‖gṼ tot(·, θ )(K ∗
0 (θ ) − z)−1‖ ≤ |g|

g1
.
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If |g| < g1, the resolvent formula (86) holds on G(ν, ε), and, for m ≥ 1,

sup
z∈G(ν,ε)

‖(z − K ∗
g (θ ))−1 −

m−1∑

j=0

(z − K ∗
0 (θ ))−1(gṼ tot(·, θ )(z − K ∗

0 (θ ))−1) j‖ ≤
( |g|

g1
)m

1 − |g|
g1

.

(87)

It follows that
⋃

ε>
κ−|ν|

2

G(ν, ε) ⊂ ρ(K ∗
g (θ )), (88)

where ρ(K ∗
g (θ )) is the resolvent set of K ∗

g (θ ). Moreover, setting m = 1 in (87), it
follows that, for |g| < g1/2,

‖P̃g,(k)(θ ) − P̃0,(k)‖ < 1,

and hence P̃g,(k) is analytic in g. We still need to prove the independence of
σpp(K ∗

g (θ )) of θ ∈ I −(κ).

Fix (g0, θ0) ∈ C × I −(δ) such that |g0| < g1. The discrete eigenvalues of
K ∗

g0
(θ ) are analytic functions with at most algebraic singularities in the neigh-

bourhood of θ0, since K ∗
g0

(θ ) is analytic in θ . Moreover, since K ∗
g0

(θ0) and K ∗
g0

(θ )
are unitarily equivalent if (θ − θ0) ∈ R, it follows that the pure point spectrum of
K ∗

g0
(θ ) is independent of θ .

(ii) Analyticity of T̃g,(k) directly follows from (i) and the definition of T̃g,(k).

Since ‖T̃g,(k) − 1‖ < 1 for |g| < g1/2, T̃ −1/2
g,(k) is also analytic in g. Inserting the

Neumann series for the resolvent of K ∗
g (θ ), gives

T̃g,(k) = 1 +
∞∑

j=1

g j T̃ ( j)
(k) , (89)

with

T̃ ( j)
(k) =

∮

γ k

dz

2π i
(z − K �)−1 P̃0,(k)Ṽ

tot(·, θ )((z − K ∗
0 (θ ))−1Ṽ tot(·, θ )) j−1 P̃0,(k)(z − K �)−1.

(90)
Similarly,

M̃g,(k) = K � +
∞∑

j=1

g j M̃ ( j)
(k) , (91)

with

M̃ ( j)
(k) =

∮

γk

dz

2π i
z(z − K �)−1 P̃0,(k)Ṽ

tot(·, θ )((z − K ∗
0 (θ ))−1Ṽ tot(·, θ )) j−1 P̃0,(k)(z − K �)−1.

(92)
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The odd terms in the above two expansions are zero due to the fact that P̃0,(k)

projects onto the N = 0 sector. The first non-trivial coefficient in the Taylor series
of �̃g(k) is

�̃
(2)
(k) = M̃ (2)

(k) − 1

2

(
T̃ (2)

(k) K � + K � T̃ (2)
(k)

)
(93)

= 1

2

∮

γ k

dz

2π i
(ξk(z)(z − K �)−1 + (z − K �)−1ξk(z)), (94)

with

ξk(z) = P̃0(k)Ṽ
tot
g (·, θ )(z − K ∗

0 (θ ))−1Ṽ tot
g (·, θ )P̃0(k).

�

We explicitly compute the discrete spectrum of K ∗
g (θ ) to second order in

the coupling constant. Let e1,2 ∈ H� denote the vectors of spin up and down
respectively. Then the states in H̃ corresponding to the eigenvalues E (k)

j (g =
0), j = 0, . . . , 3, k ∈ Z, are

φ0
k = eikω ⊗ e1 ⊗ e1 ⊗ 
̃R1 ⊗ · · · ⊗ 
̃Rn ,

φ1
k = eikω ⊗ e2 ⊗ e2 ⊗ 
̃R1 ⊗ · · · ⊗ 
̃Rn ,

φ2
k = eikω ⊗ e2 ⊗ e1 ⊗ 
̃R1 ⊗ · · · ⊗ 
̃Rn ,

φ3
k = eikω ⊗ e1 ⊗ e2 ⊗ 
̃R1 ⊗ · · · ⊗ 
̃Rn ,

where 
Ri is the vacuum state in FRi (L2(R;B)).
We apply perturbation theory to calculate E (k)

j (g). We know that

�̃
(2)
(k) = 1

2

∮

γ k

dz

2π i

{
P̃0,(k)Ṽ

tot(·, θ )(z − K0(θ ))−1Ṽ tot(·, θ )P̃0,(k)
(
z − K �

(k)

)−1

+(
z − K �

(k)

)
P̃0,(k)Ṽ

tot(·, θ )(z − K0(θ ))−1Ṽ tot(·, θ )P̃0,(k)
}
. (95)

For fβ,µ as in (29), we let its Fourier transform be

f̂β,µ,m(u, ω) := 1

τ

∫ τ

0
dte−imωt fβ,µ(u, t). (96)

Similarly, for f #
β,µ as in (30), we let

f̂ #
β,µ,m(u, ω) := 1

τ

∫ τ

0
dte−imωt f #

β,µ(u, t). (97)
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Consider first the nondegenerate eigenvalue E (k)
3 . Applying the Cauchy inte-

gration formula to (95), and using the facts that

lim
ε↘0

Re
1

x − iε
= PV

1

x
, and lim

ε↘0
I m

1

x − iε
= πδ(x),

where PV denotes the Cauchy principal value, it follows that

Re � φ3
k , �̃

k(2)
3 φ3

k � =
∑

m∈Z

n∑

i=1

PV

∫

R
du

‖ f̂βi ,µi ,m(u,w)‖2
B

2ω0 − (k − m)ω − u
,

I m � φ3
k , �̃

k(2)
3 φ3

k � = −π
∑

m∈Z

n∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω,ω)‖2
B,

where � ·, · � is the scalar product on H̃. Therefore,

E (k)
3 (g) = kω + 2ω0 + g2

∑

m∈Z

n∑

i=1

PV

∫

R
du

‖ f̂βi ,µi ,m(u,w)‖2
B

2ω0 − (k − m)ω − u

− iπg2
∑

m∈Z

n∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω,ω)‖2
B + O(g4).

Similarly,

E (k)
2 (g) = kω − 2ω0 − g2

∑

m∈Z

n∑

i=1

PV

∫

R
du

‖ f̂βi ,µi ,m(u,w)‖2
B

2ω0 − (k − m)ω − u

− iπg2
∑

m∈Z

n∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω,ω)‖2
B + O(g4).

Next we use degenerate perturbation theory to calculate E (k)
j (g), j = 0, 1.

Applying the Cauchy integration formula to (95) and using the definitions of fβ,µ

and f #
β,µ, it follows that

Re � φ
0,1
k , �̃

k(2)
3 φ

0,1
k � = −Re � φ

1,0
k , �̃

k(2)
3 φ

0,1
k �

= ±
∑

m∈Z

n∑

i=1

PV

∫

R
du

‖ f̂βi ,µi ,m(u,w)‖2
B

2ω0 − (k − m)ω − u
,

I m � φ
0,1
k , �̃

k(2)
3 φ

0,1
k � = −I m � φ

1,0
k , �̃

k(2)
3 φ

0,1
k �

= −π
∑

m∈Z

n∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω, ω)‖2
B.
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Therefore,

E (k)
0,1(g) = kω + g2a0,1 + O(g4), (98)

where a0,1 are the eigenvalues of the 2 × 2 matrix

−iπ
∑

m∈Z

n∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω,ω)‖2
B

(
1 −1

−1 1

)
. (99)

By construction, Kgeikωt
 = kωeikωt
 and U (θ )eikωt
 = eikωt
, so {kω : k ∈
Z} are also isolated eigenvalues of K ∗

g (θ ),∈ I −(δ). This can be seen by defining
the spectral projections corresponding to the real isolated eigenvalues of Kg(θ ),
using the resolvent, and taking the adjoint to define the corresponding spectral
projections for the real isolated eigenvalues of K ∗

g (θ ).12

The vector ψ = ( 1
1 ) is the eigenvector corresponding the eigenvalue 0 of

�̃2
g,(k). Hence,

E (k)
0 (g) = kω, (100)

E (k)
1 (g) = kω − 2π ig2

∑

m∈Z

n∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω)‖2
B + O(g4)

(101)

Note that due to assumption (A3), I m E (k)
j < 0, for j = 1, 2, 3, while I m E (k)

0 =
0.13 We have proven the following corollary to Theorem 4.3.

Corollary 4.4. Suppose assumptions (A1)–(A3) hold. Then, for θ ∈ I −(κ) and
|g| < g1/2, where g1 satisfies (81), K ∗

g (θ ) has infinitely many simple eigenvalues,

{kω}k∈Z, on the real axis, where ω = 2π
τ

.

We will use the results of Theorem 4.3 and Corollary 4.4 to prove that the
true state of the coupled system converges to a time-periodic state.

12 Suppose α is an isolated and real eigenvalue of a closed operator A. Then the spectral projection
corresponding to α is

P = 1

2π i

∮

γα

(z − A)−1dz,

where γα is a contour enclosing α only. Since α is real and isolated, it is also an eigenvalue of A∗
with corresponding projection P∗. (Using Cauchy’s integration formula, one may readily verify that
A∗ P∗ = P∗ A∗ = αP∗ and that (P∗)2 = P∗.)

13 Alternatively, one can use the Feshbach map (see Ref. 6) to compute the perturbation of the discrete
spectrum of K ∗

g (θ ), which gives the same result.
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Fig. 1. Spectrum of K ∗
g (θ ). (color online)

5. CONVERGENCE TO TIME-PERIODIC STATES

The following theorem claims that, under suitable assumptions, the true
state of the system converges to a time-periodic state with the period τ of the
perturbation.

Choose κ = min(δ, π
β1

, . . . , π
βn

) (as in Sec. 4), define htest := D(eκ
√

p2+1),

and let Otest,R be the ∗-algebra generated by b#( f ), f ∈ htest , and by 1R. Note
that Otest,R is norm-dense in OR. We define a ∗-algebra

C := O� ⊗ OR1,test ⊗ · · · ⊗ ORn,test , (102)

which is dense in O.
We make the following additional assumption.

(A4) The interaction Hamiltonian V (t) belongs to C, for t ∈ R.
Let

D := 1� ⊗ 1� ⊗ e
−κ

√
A2
R1

+1 ⊗ · · · ⊗ e−k
√

A2
Rn

+1, (103)

where ARi = d�(i∂ui ), i = 1, . . . , n, is the second quantization of the generator
of energy translations for the i th reservoir. The operator D is positive such that
D
 = 
, and RanD is dense in H. This opertor will be used as a regulator in
order to apply the complex deformation technique. We have the following theorem.
We will show in the following theorem that the time-periodic state to which the
real state of the coupled system converges is related to a zero-energy resonance
state given by 
̃g,(0) := (1 ⊗ D)P̃g,(0)(1 ⊗ 
).
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Theorem 5.1. (Convergence to time-periodic states).
Assume assumptions (A1)–(A4) hold. Assume further that a ∈ C. Then there

is a constant g1 > 0 satisfying (81), such that, for |g| < g1/2, the following holds

lim
n→∞〈
,αnτ+t

g (a)
〉 = 〈
̃g,(0), D−1αt
g(a)
〉, (104)

where 
̃g,(0) corresponds to the zero-energy resonance of the adjoint of the Floquet
Liouvillean, K ∗

g , and D is given by (103).

Proof: First note that by using a Dyson series expansion, it follows from as-
sumption (A4) and the fact that a ∈ C that αt

g(a) ∈ C, and hence αt
g(a)
 ∈

D(D−1).
The remainder of the proof relies on the result of Theorem 4.3, Corollary

4.4, and equation (58) (Sec. 4). It follows from (58) and the time periodicity of
f ∈ H̃ = L2([0, τ ]) ⊗ H that

(e−i K ∗
g nτ 1 ⊗ 
)(0) = Ũg(nτ, 0)(1 ⊗ 
)(0) = Ũg(nτ, 0)
. (105)

Let 1 ⊗ 
 =: 
̄ ∈ H̃, and D̄ := 1 ⊗ D.
Without loss of generality, we assume that ω ≡ 2π

τ
�= 2ω0; (if 2π

τ
= 2ω0, the

state of the system typically oscillates between two resonance states until it finally
converges to a time-periodic state; see remark 1). Using the dynamics on C(O,
)
and (105), it follows that

lim
n→∞

〈

,αnτ+t

g (a)

〉 = lim

n→∞
〈
Ũg(nτ, 0)
,αt

g(a)

〉

(106)

= lim
n→∞〈(e−i K ∗

g nτ 
̄)(0), αt
g(a)
〉 (107)

Using the regulator D̄ and complex spectral translation,

lim
n→∞

〈

,αnτ+t

g (a)

〉 = lim

n→∞〈(D̄U (−θ )e−ik∗
g (θ)nτU (θ )D̄ 
̄)(0), D−1αt

g(a)
〉
(108)

= lim
n→∞

〈
(D̄U (−θ )

∫ ∞

−∞
du(u + iη

−K ∗
g (θ ))−1e−i(u+iη)nτ 
̄)(0), D−1αt

g(a)

〉
. (109)

We split the above integration into two terms,

lim
n→∞〈(D̄U (−θ )

∫ ∞

−∞
du(u + iη − K ∗

g (θ ))−1e−i(u+iη)nτ 
̄(0), D−1αt
g(a)
〉 (110)

= lim
n→∞〈(D̄U (−θ )

∮

γ

dz(z − K ∗
g (θ ))−1e−i znτ 
̄)(0), D−1αt

g(a)
〉 +
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+ lim
n→∞〈(D̄U (−θ )

∫ ∞

−∞
du(u − i(µ − ε) − K ∗

g (θ ))−1e−i(u−i(µ−ε))nτ 
̄)(0),

D−1αt
g(a)
〉, (111)

where η > 0, 0 < ε < µ and γ is the contour enclosing the point spectrum of
K ∗

g (θ ) only.
Using the results of Theorem 4.3 and Corollary 4.4, the first term converges

to a time-periodic expression,

lim
n→∞

〈
(D̄U (−θ )

∮

γ

dz(z − K ∗
g (θ ))−1e−i znτ 
̄)(0), D−1αt

g(a)


〉
(112)

=
∑

k∈Z
lim

n→∞
〈
(D̄U (−θ )S̃−1

g,(k)(θ )e−i�̃g,(k)(θ)nτ S̃g,(k)(θ )
̄)(0), D−1αt
g(a)


〉
(113)

=
∑

k∈Z

〈
(D̄ P̃g,(k)(θ )
̄)(0), D−1αt

g(a)

〉

(114)

Let


̃g,(k) := D̄ P̃g,(k)(θ )(eikωt ⊗ 
), (115)

and denote by � ·, · � the scalar product on H̃. Then

D̄ P̃g,(k)(θ )D̄ =� (eikωt ⊗ 
), · � 
̃g,(k). (116)

Therefore,

D̄ P̃g,(k)(θ )
̄ = � eikωt ⊗ 
, 1 ⊗ 
 � 
̃g,(k) (117)

= 
̃g,(0)δk,0 , (118)

where δk,0 is the Kronecker delta, and hence
∑

k∈z

〈
(D̄ P̃g,(k)
̄)(0), D−1αt

g(a)
〉 = 〈(
̃g,(0))(0), D−1αt
g(a)


〉
, (119)

where 
̃g,(0) is the zero-energy resonance of the Floquet Liouvillean. The second
term in (111) converges exponentially fast to zero since

〈
(D̄U (−θ )

∫ ∞

−∞
du(u − i(µ − ε) − K ∗

g (θ ))−1e−i(u−i(µ−ε))nτ 
̄)(0),

D−1αt
g(a)


〉
= O(e−(µ−ε′)nτ ), (120)

where 0 < ε′ < ε < µ; (see Ref. 24, Chapter 19). �
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Remarks.

(1) When ω = 2π
τ

= 2ω0, the system exhibits the phenomenon of resonance:
The state of the system oscillates between two resonances until it finally
converges to the time periodic state corresponding to 
̃g,(0). This can be
verified by a second order time-dependent perturbation theory calculation
(see also Ref. 26).

(2) By a standard argument, the result of Theorem 5.1 can be extended to any
initial state normal to ω (see for example, Refs. 16, 20, 21).

(3) Note that
〈
(
̃g,(0))(0), D−1αt

g(a)
〉 = 〈(
̃g,(k))(0), D−1αt
g(a)eikωt


〉
,

where 
̃g,(k) is the state corresponding to the kω-energy resonance of
the adjoint of the Floquet Liouvillean. In other words, all kω-energy
resonances belong to the same class of time-periodic states.

In the next section, we discuss the positivity of entropy production per cycle
and Carnot’s formulation of the second law of thermodynamics.

6. POSITIVITY OF ENTROPY PRODUCTION

We consider a small system coupled to two fermionic reservoirs at the same
chemical potential µ, yet at two different temperatures β1 and β2, with β1 <

β2. Together with assumptions (A1)–(A4), we assume that the perturbation is
differentiable in t, for t > 0. The first reservoir acts as a heat source, and the
second reservoir as a heat sink. We want to show that, after the true state of the
system has converged to a time-periodic state, the entropy production per cycle is
strictly positive. We first prove that the time-periodic state, which the true state of
the system converges to, is not normal to the initial state.14

We introduce the standard Floquet Liouvillean,

K̃g := −i∂t + Lg(t) , (121)

acting on the extended Hilbert space L2([0, τ ]) ⊗ H, with periodic boundary con-
ditions in t, where Lg(t) = L0 + gV (t) − g J V (t)J , is the standard Liouvillean.
We study the spectrum of the standard Floquet Liouvillean using complex spectral
translations. Since the proof of the following proposition is very similar to the
analysis in Sec. 4, we only sketch the main steps of the proof.

14 In this section, we will use standard results about von Neumann algebras and Tomita-Takesaki
modular theory. We refer the reader to Ref. 7, chapters 2.4 and 2.5 for an exposition of these results.
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Proposition 6.1. Suppose assumptions (A1)–(A3) (Sec. 3) hold. Then there exists
a positive constant g2, such that, for |g| < g2, the spectrum of the standard Floquet
Liouvillean K̃g defined in (121), σ (K̃g) is absolutely continuous and

σ (K̃g) = σac(K̃g) = R.

Sketch of proof.

Let U (θ ) as in Sec. 4. We define the complex deformed standard Floquet
Liouvillean by

K̃g(θ ) : = U (θ )K̃gU (−θ ) (122)

= −i∂t + Lg(t, θ ) , (123)

where

Lg(t, θ ) = L0 + θ N + gV tot(t, θ ) ,

and

V tot(t, θ ) = U (θ )(V (t) − J V (t)J )U (−θ )

=
n∑

i=1

{σ ⊗ 1� ⊗ a∗( f (θ)
i,βi ,µ

(t)
) + σ+ ⊗ 1� ⊗ a

(
f (θ)
i,βi ,µ

(t)
)

− i1� ⊗ σ ⊗ (−1)Ni a∗( f #(θ)
i,βi ,µ

(t)
) − i1� ⊗ σ+ ⊗ (−1)Ni a

(
f #(θ)
i,βi ,µ

(t)
)}.

It follows from assumption (A2) that V tot(t, θ ) is bounded for 0 ∈ I (δ). Let

C̃ := sup
t∈R,θ∈I (δ)

‖V tot(t, θ )‖. (124)

For θ ∈ I −(κ), choose ν such that 0 > ν > −κ and −κ < I mθ < −(κ + |ν|)/2.
Choose g2 > 0 such that

g2C̃ < (k + ν)/4. (125)

Then, using an argument which is similar to the proof of Theorem 4.3, one can
show that, for |g| < g2 the essential spectrum of K̃g(θ ) is contained in the half-
plane {z ∈ C : I mz < ν}, and that it discrete spectrum

σpp(K̃g) = {
Ẽ (k)

j (g) : k ∈ Z, j = 0, . . . , 3
}
, (126)

where (to second order in perturbation theory)

Ẽ (k)
2,3(g) = kω ∓ 2ω0 ∓ g2

∑

m∈z

2∑

i=1

PV

∫

R
du

‖ f̂βi ,µi ,m(u, ω)‖2
B

2ω0 − (k − m)ω − u
−
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− iπg2
∑

m∈z

2∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω,ω)‖2
B + O(g4),

while

Ẽ (k)
0,1(g) = kω + g2a0,1 + O(g4) , (127)

where a0,1 are the eigenvalues of the 2 × 2 matrix

−iπ
∑

m∈z

2∑

i=1

‖ f̂βi ,µi ,m(2ω0 − (k − m)ω,ω)‖2
B

×
(

1 −e−βi (2ω0−(k−m)ω−µ)/2

−e−βi (2ω0−(k−m)ω−µ)/2 1

)
. (128)

Note that, to second order in the coupling g, the discrete spectrum is below the
real axis. The claim of the theorem follows by noting that

s − lim
I mθ↑0

(K̃g(θ ) − z)−1 = (K̃g(Reθ ) − z)−1

for small real g and large enough Imz. �

This result is sufficient to show that the time periodic state ω+
g,s defined in

(9), Sec. 2, is not normal to the initial state ω. Let g3 := min{g1/2, g2}, where g1

satisfies (81) (Sec. 4) and g2 satisfies (125).

Theorem 6.2. Suppose assumptions (A1)–(A3) (Sec. 3) and (A4) (Sec. 5) hold.
Then, for |g| < g3, the time-periodic state ω+

g,s , for s ∈ [0, τ ), does not belong to
Nω, ie, ω+

g,s is not normal with respect to ω.

Proof: First note that under the assumptions of this theorem, the results of
Proposition 6.1 hold. In particular, K̃g has no real eigenvalues.

Fig. 2. Spectrum of K̃g(0). (color online)



462 Abou Salem and Fröhlich

By construction,

ω+
g,s ◦ α±τ

g = ω+
g,s . (129)

Since we are assuming that ω+
g,s ∈ Nω, there exists a unique vector 
+

g,s in
the natural positive cone P := {a Ja
 : a ∈ M} associated to the pair (M, ω),
such that

ω+
g,s(a) = 〈
+

g,s, a
+
g,s〉, (130)

for a ∈ M.15 Now, (46), (128), and (129) imply that

〈Ūg(τ, 0)
+
g,s, aŪg(τ, 0)
+

g,s〉 = 〈
+
g,s, a
+

g,s〉, (131)

for a ∈ M. Using the facts that

[J, Ūg(t, t ′)] = 0 , (132)

where J is the modular conjugation and Ūg is the propagator generated by
the standard Liouvillean, J
+

g,s = 
+
g,s since 
+

g,s ∈ P, J ∗ = J , and JMJ =
M′, it follows that (130) also holds for a a ∈ M′. Furthermore, we know
that16

ŪgP ⊂ P ,

and that the linear span of P is dense in H. Let P+
g,s be the orthogonal projection

onto 
+
g,s , then P+

g,s ∈ M ∨ M′. Moreover, since π = π� ⊗ πR1 ⊗ · · · ⊗ πRn ,
in the Araki-Wyss representation, M is a factor (of type I I I1 see Ref. 2), ie,
M ∩ M′ = {C1}.17 Suppose that

Ūg(τ, 0)
+
g,s = c1


+
g,s + c2�,

where � ∈ Ran(1 − P+
g,s) and c1,2 are complex numbers to be determined. Choos-

ing a = (1 − P+
g,s) in (130) gives

|c2|2 = 0.

Together with the fact that

〈Ūg(τ, 0)
+
g,s, Ūg(τ, 0)
+

g,s, 〉 = 〈
+
g,s,


+
g,s〉 = 1,

it follows that |c1|2 = 1. This implies that there exists λ ∈ R such that

Ūg(τ, 0)
+
g,s = e−iλτ
+

g,s . (133)

15 For a proof of this statement, see Ref. 7, Theorems 2.5.31 and 2.3.19.
16 see Corollary 2.5.32 in Ref. 7.
17 Using the isomorphism between FR1 (L2) ⊗ · · · ⊗ FRn (L2) and F (L2

R1
⊗ · · · ⊗ L2

Rn
), one can

proceed to show that M is a factor as in the case of the Araki-Wyss representation for a single
reservoir of free fermions.
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For each fixed s ∈ [0, τ ], we define

φs(t) := eiλt Ūg(t, 0)
+
g,s, (134)

then φs is an eigenfunction of K̃g with eigenvalue λ. (This can be checked by
looking at K̃gφs .) However, this is in contradiction with the result of Proposition
6.1, and hence ω+

g,s �∈ Nω. �

We have the following result regarding the strict positivity of entropy pro-
duction per cycle.

Theorem 6.3. (Positivity of entropy production) Suppose assumptions (A1)–
(A4) hold. Then the entropy production per cycle, after the state of the system has
converged to a time-periodic state, is strictly positive, ie,

�Ent :=
∫ τ

0
dtω+

g,t (δω(gV (t))) > 0. (135)

Proof: It follows from assumptions (A1)–(A4) and Theorem 5.1, that

sup
T ∈R+

|
∫ T

0
dt

{
ω+

g,t mod τ (δω(gV (t))) − ω ◦ αt
g(δω(gV (v)))

}| < ∞.

Together with the result of Theorem 6.2, this implies that ω+
g,s satisfies the as-

sumptions of Proposition 2.1, and the entropy production per cycle after the
state of the coupled system has converged to a time-periodic state, is strictly
positive. �

Regarding the explicit computation of entropy production per cycle, (134),
we would like to make the following remark. Since it follows from Theorem
4.3 that 
̃g,(0) is analytic in g for g < g1/2, one can expand ω+

g,s to any order
in the coupling g, and compute an explicit expression for �Ent given in (134)
up to this order in the coupling constant; (see also Refs. 20, 21 for a discussion
of a perturbative approach for calculating entropy production in nonequilibrium
steady-states).

APPENDIX: GLUED HILBERT SPACE REPRESENTATION

We want to show that

F(L2(R+;B)) ⊗ F(L2(R+;B)) ∼= F(L2(R;B)).
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Let 
 be the vacuum state in the fermionic Fock space F(L2(R+;B)). For
fermionic creation/annihilation operators on F(L2(R+;B)),

b#( f ) :=
∫

m(u)dudσ f (u, σ )b#(u, σ ), f ∈ L2(R+;B),

define the creation/annihilation operators on F(L2(R+;B)) ⊗ F(L2(R+;B)) as

b#
l ( f ) := b#( f ) ⊗ 1 ;

b#
r ( f ) := (−1)N ⊗ b#( f̄ ) ,

where ·̄ corresponds to complex conjugation. Note that b1 and br anti-commute.
Let ã and ã∗ be the annihilation and creation operators on the fermionic Fock
space F(L2(R+;B) ⊕ (L2(R+;B)), such that they satisfy the usual CAR, and let

̃ be the vacuum state in F(L2(R+;B) ⊕ (L2(R+;B)). An isomorphism between
F(L2(R+;B)) ⊗ F(L2(R+;B)) and F(L2(R+;B) ⊕ (L2(R+;B)) follows by the
identification

b#
l ( f ) ∼= ã#(( f, 0)),

b#
r (g) ∼= ã#((0, g)) ,


 ⊗ 
 ∼= 
̃.

Now we claim that F(L2(R+;B) ⊕ (L2(R+;B)) is isomorphic to
F(L2(R, du;B)). For φ,ψ ∈ R, consider the mapping

jφ,ψ : L2(R+;B) ⊕ L2(R+;B) � ( f, g) → h ∈ L2(Rdu;B) ,

such that

h(u, σ ) :=
{

eiφ
√

m(u) f (u, σ ), u ≥ 0

eiψ
√

m(|u|)g(|u|, σ ), u < 0
.

This mapping is an isometry, since

‖h‖2
L2(R,du;B) = ‖( f, g)‖2

L2(R+;B)⊗L2(R+;B)

=
∫

R+;B
dudσm(u)| f (u, σ )|2 +

∫

R+;B
dudσm(u)|g(u, σ )|2

= ‖ f ‖2
L2(R+;B) + ‖g‖2

L2(R+;B)

Moreover, the mapping jφ,ψ is an isomorphism, since, for given h ∈
L2(R;B), there exists a mapping j−1

φ,ψ : h → ( f, g) ∈ L2(R+;B) ⊗ L2(R+,B),



Cyclic Thermodynamic Processes and Entropy Production 465

such that

f (u, σ ) := e−iφ

√
m(u)

h(u, σ ), u > 0,

g(u, σ ) := e−iψ

√
m(|u|)h(|u|, σ ), u < 0.
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